Progress Review Nitric Oxide and the Cerebral Circulation
نویسنده
چکیده
Background Nitric oxide (NO) is a potent vasodilator that was initially described as the mediator of endothelium-dependent relaxation (endothelium-derived relaxing factor, EDRF). It is now known that NO is produced by a variety of other cell types. Summary of Review Endothelium produces NO (EDRF) under basal conditions and in response to a variety of vasoactive stimuli in large cerebral arteries and the cerebral microcirculation. Endothelium-dependent relaxation is impaired in the presence of several pathophysiological conditions. This impairment may contribute to cerebral ischemia or stroke. Activation of glutamate receptors appears to be a major stimulus for production of NO by neurons. Neuronally derived NO may mediate local increases in cerebral blood flow during increases in cerebral metabolism. NO synthase-containing neurons also innervate large cerebral arteries and cerebral arterioles on the brain surface. Activation of parasympathetic fibers that innervate cerebral vessels produces NO-dependent increases in cerebral blood flow. Increases in cerebral blood
منابع مشابه
Inhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats
Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...
متن کاملRole of Nitric Oxide and ATP-Sensitive K+ Channels in Regulation of Basal Blood Flow and Hypercapnic Vasodilatation of Cerebral Blood Vessels in Rabbit
Background: The mechanisms underlying cerebral hypercapnic vasodilatation are not fully understood. Objective: To investigate the role of nitric oxide (NO) and ATP-sensitive potassium (KATP) channels in basal blood flow regulation and hypercapnia-induced vasodilatation in rabbit cerebral blood vessels. Methods: The change in cerebral blood flow was measured by a laser Doppler flowmeter in 18 Ne...
متن کاملContribution of Nitric Oxide Synthase (NOS) Activity in Blood-Brain Barrier Disruption and Edema after Acute Ischemia/ Reperfusion in Aortic Coarctation-Induced Hypertensive Rats
Background: Nitric oxide synthase (NOS) activity is increased during hypertension and cerebral ischemia. NOS inactivation reduces stroke-induced cerebral injuries, but little is known about its role in blood-brain barrier (BBB) disruption and cerebral edema formation during stroke in acute hypertension. Here, we investigated the role of NOS inhibition in progression of edema formation and BBB d...
متن کاملCerebral blood flow regulation by nitric oxide: recent advances.
Nitric oxide (NO) is undoubtedly quite an important intercellular messenger in cerebral and peripheral hemodynamics. This molecule, formed by constitutive isomers of NO synthase, endothelial nitric-oxide synthase, and neuronal nitric-oxide synthase, plays pivotal roles in the regulation of cerebral blood flow and cell viability and in the protection of nerve cells or fibers against pathogenic f...
متن کاملP40: The Effect of Prevention and Treatment of Cerebral Ischemia on the Basis of Neuroprotective Properties of Medicinal Herbs
Stroke as the third cause of death in industrialized societies after cardiovascular and cancerous diseases Based on the type of artery involved, its location and size can lead to various side effects such as half-body movement disorder, sensory impairment, memory impairment, and other problems. In this regard, due to the complications of chemical drugs and their long-term use in treating the di...
متن کامل